
Artifact Sub Math

tooflesswulf

February 6, 2022

1 Introduction

I hate this game.
Related: Generating functions. Higher order derivatives. Bell’s polynomi-

als. Beta functions. Fourier transforms. Young’s inequality.

1.1 Contribution 1: Roll probability calculator

Suppose you want the artifact in Figure 1 to have more than 10% Energy
Recharge and more than 15% CRIT DMG after upgrading to +20. I give an
efficient cache-based method for calculating this probability. See section 2.

Figure 1: An example artifact

1

1.2 Contribution 2: Artifact replacement calculator

In Figure 2, I show my Beidou’s current flower compared with a +0 artifact.
Using a Beidou damage formula, I can compute the probability that upgrading
the flower to +20 will improve Beidou’s total damage or not.

Figure 2: I would like to decide whether it’s worth upgrading the +0 feather or
not.

We can run the computation for every un-upgraded artifact in inventory;
the ’best’ artifact to upgrade is the one with highest probability of improving
total damage. See Section 3.

1.3 Contribution 3: Artifact set completeness And DPS-
to-resin

With a character, damage formula, and artifact set, we can evaluate the prob-
ability that a random +0 artifact, once upgraded to +20, will beat the current
artifact set’s total DPS. Then we can find the expected farming duration for any
piece of the set to be improved. We also have a way to estimate the expected
DPS-to-resin relation. See Section 4.

2 Roll probability calculation

Let A be an artifact. The artifact has 4 substats, with values Ai. It turns out
the substat values can be written as an integer system, Ai ∈ αZ. The α depends
on the substat; for example CritDmg has α = .78.

Then the upgrade value of an artifact’s substat can be written as a uniform
choice U = {7α, 8α, 9α, 10α}1. When a substat is upgraded n times, its value
follows the sum of n independent U distributions.

1Take for example CritDmg, which has upgrade values of {5.44, 6.22, 6.99, 7.77}. It turns
out that {7, 8, 9, 10} × .777 yields the same four values

2

2.1 Generating functions and Algebra

The generating function of U is:

φ = GU (z) = E[zU] =
1

4

(
z7 + z8 + z9 + z10

)
(1)

Then a substat upgraded n times follows the distribution:

GU+···+U = φn

Generating functions of integer-value random variables follow a nice rule
with derivatives:

P (Ai = a|n) =
1

a!
G

(a)
U+···+U (0)

=
1

a!

da

dza
φn
∣∣
z=0

(2)

2.1.1 Evaluating derivatives

To evaluate the derivative in (2), we proceed via an application of Faa di Bruno’s
formula (18). Let:

f(x) = xn

φ =
1

4

(
z7 + z8 + z9 + z10

)
Then with φn = f(φ(z)), we apply (18) to get:

da

dza
f(φ(z)) =

a∑
j=1

f (j)(φ)Ba,j

(
φ′, · · · , φ(a)

)
(3)

Where Ba,j(·) is the (a, j)th partial Bell polynomial (15). Due to the con-
struction of φ, we have φ(j)(0) = j!/4 if j ∈ {7, 8, 9, 10} and zero otherwise.
This gives a special form for the Bell polynomials, which we can evaluate using
(16).

Ba,j

(
0, · · · , 7!

4
,

8!

4
,

9!

4
,

10!

4

)
= 4−j

a!

j!

(
j

a− 7j

)
3

. (4)

Then the jth derivative of f(φ(0)) evaluates to

f (j)(φ(0)) =
n!

(n− j)!
[φ(0)]n−j (5)

which is zero for all but j = n. Plugging equations (3-5) into (2), we have:

P (Ai = a|n) =
1

a!

a∑
j=1

f (j)(φ)Ba,j

(
φ′, · · · , φ(a)

)
= 4−n

(
n

a− 7n

)
3

3

2.1.2 Multivariate conditional independence

We are typically interested in more than one artifact substat at once. Fortu-
nately, artifact substat values are conditionally independent given their number
of rolls, because all the upgrade rolls are independent.

P (A1 = a1 ∧A2 = a2 ∧ · · · |n1, n2, · · ·) = P (a1|n1) · P (a2|n2) · · ·

Therefore we can efficiently evaluate the roll probability with:

X = [A1 ≥ a1 ∧A2 ≥ a2 ∧A3 ≥ a3 ∧A4 ≥ a4]

P (X|n1, · · · , n4) = P (A1 ≥ a1|n1) · · ·P (A4 ≥ a4|n4)

P (X) =
∑

n1,··· ,n4

P (X|n1, · · · , n4)P (n1, · · · , n4)

Where σ is the multinomial distribution on 4 uniform random choices.

σ(n1, · · · , n4) = P (n1, · · · , n4) = P (n1 + · · ·+ n4 = N)

2.2 Total artifact query & Caching

Let’s define:

bξ(a, n) = P (Ai = a|n+ b) = 4−(n+b)

(
n+ b

a− 7(n+ b)

)
3

bµ(a, n) = P (Ai ≥ a|n+ b) =

∞∑
a′=a

bξ(a′, n)

The parameter b toggles whether we consider the initial value as random or
not (b ∈ {0, 1}). bξ(a, n) gives the probability that a substat reaches the value a
at the nth upgrade. bµ(a, n) gives the probability the substat reaches or exceeds
the value.

With the results in section 2.1.2, the roll probability query is a function
that runs on a sum of σ and µ values; this sum contains at most (5 upgrades/4
categories →

(
5+4−1

4

)
= 70) values.

The σ and µ functions also operate on integer arguments, making them very
easy to cache (about 1kb of nontrivial values).

2.2.1 Caching σ

The function depends on the number of arguments. Four arguments is the
simplest case.

Because we have N = 5 upgrades, if we sort the inputs there are only 5
possible inputs. The values are listed in Table 1. We can use the same approach
to tabulate all possible values for N ∈ [1, 5] as well as 1-3 input σ functions.

4

σ(0, 0, 0, 5) 1/1024
σ(0, 0, 1, 4) 5/1024
σ(0, 1, 1, 3) 20/256
σ(0, 1, 2, 2) 30/1024
σ(1, 1, 1, 2) 60/1024

else 0

Table 1: Table of all σ5 values for four inputs

Evaluate according to these formula:

σ(a) =

(
N

a,N − a

)(
1

4

)a(
3

4

)N−a
σ(a, b) =

(
N

a, b,N − a− b

)(
1

4

)a+b(
2

4

)N−a−b
σ(a, b, c) = σ(a, b, c,N − a− b− c)

In total, we can cache 89 values to capture the entire behavior of the function.
See Appendix C.

2.2.2 Caching µ

Using k = n+b, we can cache bµ(a, n) = µ(a, k) . The trivial values occur when
a ≤ 7k or a > 10k. And any substat can be upgraded a maximum of 6 times,
so we have:

6∑
k=0

(10k − 7k) = 63

A total of 63 cached values to fully describe µ. See Appendix C.

2.3 Desired main and sub stats

I haven’t found an efficient way to get the probability of combinations of substats
yet. Instead, I found the probability of every 4-tuple of substats given some main
stat, and saved them in an excel sheet as exact rational numbers. See Appendix
D.

2.4 Summary

Given a query on substats, we can evaluate the probability a new artifact would
fulfill those requirements once upgraded.

P (A1 ≥ a1, . . . , A
4 ≥ a4) =

∑
n∗

σ(n∗)
∏
i

1µ(ai, ni)

5

If we already have an artifact, we can evaluate the probability that we get
ai increases in the substats, with a reduced total N number of upgrades.

P (A1 ≥ a1, . . . , A
4 ≥ a4) =

∑
n∗

σ(n∗)
∏
i

0µ(ai, ni)

3 Artifact replacement

Let D be a damage formula, evaluating on a character C and 5 artifacts A1−A5.
We also have an un-upgraded artifact Z; let Up(Z) be the distribution of random
artifacts that arises from upgrading A∗. We can compare the initial damage d
to the possible resultant damage d′.

d = D(C,A1−4, A5)

d′ = D(C,A1−4, A′), A′ ∈ Up(Z)

The goal of this section is to estimate P (d′ > d), the probability that up-
grading Z will give us a net damage increase.

3.1 Damage formula approximation

We estimate the damage formula by using a linear approximation. With the
exception of EnergyRecharge and ElementalMastery, the damage formula is
actually linear (affine) in the substats. So for sufficiently small substat values,
a linear approximation actually works quite well.

Technically, we should find the best uniform approximation of the damage
formula. However, I don’t know how to do that, so we will have to settle for the
best least-squares approximation. An artifact has only 4 substats, so we can
parameterize the damage formula in terms of those substats.

We integrate over region R = {(a1, a2, a3, a4) | 7N ≤ a1 + a2 + a3 + a4 ≤
10N}, with the damage formula re-parameterized D(a1, a2, a3, a4). Our new
damage formula becomes D′(a1, a2, a3, a4).

D′(a1, a2, a3, a4) = ~w · [a1, a2, a3, a4] + w0

R =

∫
R

(D −D′)2dai

D′ ← arg min
D′

[∫
R

(D −D′)2dai

]
The global minimum of the residual R occurs when the derivatives with ~w

and w0 are zero.

∇~wR = ∇~w

∫
R

(D −D′)2dai

=

∫
R
∇~w(D −D′)2dai

= 2

∫
R

(D −D′)∇~wD
′dai = 0 (6)

6

Evaluating this integral is difficult, to say the least. However, if D can be
expressed as a finite polynomial, then I do have a solution. See Appendix E.

k1 + k2 + k3 + k4 = K∫
R
ak11 · · · a

k4
4 dai =

[
(10N)4+K − (7N)4+K

] k1!k2!k3!k4!

(4 +K)!
(7)

3.1.1 Polynomial approximation of D

Equation (7) shows that if D is a polynomial form, we can very easily evalu-
ate (6) to find a linear approximation of the damage formula. So how do we
guarantee that D is a polynomial form?

My current method is to take a local 2nd order Taylor approximation. It’s
not ideal, but it seems to work well enough. (I’m open to suggestions though).
One benefit from using the Taylor approximation is that the Taylor approxima-
tion can be built as a composition of linear terms.

Specifically let’s take the 2nd order expansion. Let ∂i be the partial deriva-
tive with respect to the ith artifact substat. In case I want to generalize to
higher orders, I start using Einstein summation notation here.

D ≈ D∗ = D0 + (∂iD)ai +
1

2
(∂i∂jD)aiaj

3.1.2 Linear approximation of D

Now to find the least squares linear approximation by evaluating the integral in
eq (6). We can first break the integral apart into:∫

R
D′∇~wD

′dai =

∫
R
D∗∇~wD

′dai

The left side we can evaluate as a linear equation in ~w:

∇~wD
′ =

1
a1

a2

a3

a4

γk =

(10N)k − (7N)k

k!

∫
R
D′
∂D′

∂w
d~a =

γ4 γ5 γ5 γ5 γ5

γ5 2γ6 γ6 γ6 γ6

γ5 γ6 2γ6 γ6 γ6

γ5 γ6 γ6 2γ6 γ6

γ5 γ6 γ6 γ6 2γ6

w0

w1

w2

w3

w4

And the right side is a (5 × 1) column vector. So we can find ~w by solving

a linear equation.

7

3.2 The other integral∫
R
D∗∇~wD

′dai

This part’s actually quite easy, simply follow Equation (7) for each index. I
can’t figure out how to write it concisely in a nice notation though. Any tensor
calculus experts pls help :)

3.3 Computing P (d′ > d)

Moving on to the main goal, we know that d′ is approximated using D′, a
function linear in the substat values.

X = w1a1 + · · ·+ w4a4

x∗ = d− w0

P (d′ > d) ≈ P (~w · ~a+ w0 > d) = P (X > x∗) (8)

3.3.1 Weighted sums of artifact substats

Following a similar approach to section 2.1.2, we can define:

P (d′ > d) ≈ P (X > x∗) =
∑

n1,··· ,n4

P (X > x∗| · · ·)P (n1, · · ·) (9)

Which is convenient because the ai are all conditionally independent given
their upgrade numbers n1 · · ·n4. This allows us to take their sum as a convolu-
tion. Conveniently, Fourier transforms make convolutions very easy to take.

With fa|n being the probability density function p(a|n), F denoting Fourier

transform, and F{f} = f̂ being the Fourier transform of f :

fa|n=1 =
1

4
(δ7 + δ8 + δ9 + δ10)

f̂a|n =
[
e8.5iω cos

ω

2
cosω

]n
f̂αa|n =

[
e8.5iαω cos

αω

2
cosαω

]n
Then the density function of X can be determined as the following:

fX|n∗ = fw1a1|n1
? · · · ? fw4a4|n4

fX|n∗ = F−1
{

̂fw1a1|n1
· · · ̂fw4a4|n4

}
FX|n∗ =

∫ x

−∞
f(x)dx = F−1

{
1

iω
̂fw1a1|n1

· · · ̂fw4a4|n4
+ πδ(ω)

}
P (X > x∗|n∗) = 1− P (X ≤ x∗|n∗) = 1− FX|n∗(x∗)

And we have an exact solution for P (X > x∗). If you’re a psychopath, you
should start looking for NFTs (numerical Fourier Transform/inverse-Fourier
transform).

8

3.3.2 Approximate weighted sums of artifact substats

Because eq (8) approximates P (d′ > d) using P (X > x∗) in the first place,
let’s simplify computation by approximating P (X > x∗) via the central limit
theorem.

By the central limit theorem, X should be a roughly Normal distribution.
So if we know the mean and variance, we should have a decent idea of the
distribution of X.

µX =
∑
i

wi
17

2
ni

σ2
X =

∑
i

w2
i

5

4
ni

X ′ ∼ N (µ;σ)

Normal distributions are very nice. This gives us a very easy way to estimate
expression (8).

P (X > x∗|n∗) ≈ P (X ′ > x∗|n∗)

=
1

2
Erfc

(
x∗ − µX
σX
√

2

)
(10)

3.3.3 Estimation Error

See appendix F for my derivation of the error of our approximation. This
is important to guarantee that our approximation is always valid, but is less
important for those interested in implementation.

3.4 Normal approximation of d′

We can further simplify evaluating the query P (d′ > d) by applying a Gaussian
approximation over the entire distribution of d′, though this turns out to be
quite a bad approximation sometimes. (See figure 3) Call our approximation η.
Starting from eq (9), we have:

µη = E[d′] =
∑
n∗

σ(n∗)E[X|n∗]

=
∑
n∗

σ(n∗)
17

2

∑
i

wi(ni + b)

=
17

8
(N + 4b)

∑
i

wi

9

E[(d′)2] =
∑
n∗

σ(n∗)E[X2|n∗]

=
∑
n∗

σ(n∗)

5

4

∑
i

w2
i (ni + b) +

(
17

2

∑
i

wi(ni + b)

)2

= ((N + 4b)2 −N)

(
17

8

∑
i

wi

)2

+

(
5

4

(N + 4b)

4
+

172N

42

)∑
i

w2
i

σ2
η = E[(d′)2]− (E[d′])

2

=

(5

4

(N + 4b)

4
+

172N

42

)∑
i

w2
i −N

(
17

8

∑
i

wi

)2

And now we can very quickly estimate:

P (d′ > d) ≈ P (η > d) =
1

2
Erfc

(
d− µη
ση
√

2

)

Figure 3: Comparison between exact and approximate methods. The fastest
method, TotalGaussian, is a very poor approximation in this circumstance.

10

3.5 Summary

Given a damage formula D, approximate it:

D → D′ = w0 + w1a1 + w2a2 + w3a3 + w4a4
w0

w1

w2

w3

w4

 =

∫
R
daiD

γ4 γ5 γ5 γ5 γ5

γ5 2γ6 γ6 γ6 γ6

γ5 γ6 2γ6 γ6 γ6

γ5 γ6 γ6 2γ6 γ6

γ5 γ6 γ6 γ6 2γ6

−1

1
a1

a2

a3

a4

x∗ = d− w0

µX =
17

2

∑
i

wini

σX =

√
5

4

∑
i

w2
i ni

Then we can evaluate the probability an existing or new artifact would beat
some damage threshold.

P (d′ > d) ≈
∑
n∗

P (X ′ > x∗|n∗)P (n1, n2, n3, n4)

P (X ′ > x∗|n∗) =
1

2
Erfc

(
x∗ − µX
σX
√

2

)
If we care for speed more than accuracy,

4 Artifact Set Completeness

We can measure the quality of an artifact set by how difficult it would be to
improve it in terms of damage or some other criteria. Using equation (10), we
can estimate the probability that a newly farmed artifact with some given main
stat and sub stats, once upgraded to +20, will improve the damage formula.
Then we can use the results of section 2.3 to sum across all possible main- and
sub-stat combinations to get the total probability that a newly farmed artifact
will improve the set.

Let M be the set of main stats, S be the set of sub stats. The allowed
substat combinations are s1−4 ∈ S4.

p =
∑
m∈M

∑
s1−4∈S4

P (s1−4|m)P (m)P (d′ > d|m, s1−4) (11)

Note that the linearization of the damage formula P (d′ > d|m, s1−4) changes
for different main stats and sub stats, so it must be re-computed for every
iteration of the sum.

11

4.1 Expected farming duration for Improvement

The probability calculated by eq (11) gives the probability a newly farmed
artifact of some slot will improve the overall damage.

ptot =
1

5

[
pFlower + pFeather + pSands + pCup + pHat

]
Then the expected number N of artifacts that must be farmed is:

E[N] =
1

ptot

4.2 Expected increase in damage

Suppose you farm a new random artifact and upgrade it to +20. Let d′ be a
random variable denoting the new damage number. Now suppose you have a
base damage number d that you’re trying to beat, and keep farming artifacts
until you have a random +20 artifact whose damage d′ is greater than d. Call
this damage value ρ (its an upside-down d). Mathematically, ρ is a truncated
distribution of d′ on the left at d.

ρ = d′|d′ > d

Fρ(x) =
Fd′(x)

1− Fd′(d)

Second, we can treat d′ as a Mixture Model with weights wi:

fd′ =
∑
slot

∑
m∈M

∑
s1−4∈S

P (slot)P (s1−4|m)P (m|slot)fd′|m,s

=
∑
i

λifd′|mi,si

Then we can truncate this mixture distribution, and take the mean as follows.
Let Xi = d′|mi, si

pi = P (d′ > d|mi, si) = P (Xi > d) = 1− FXi
(d)

µi = E[Xi|Xi > d] = µXi
+

fXi(d)

1− FXi
(d)

σXi

E[ρ] = E[d′|d′ > d] =

∑
i λipiµi∑
i λipi

(12)

Thus we derive an expression for the expected increase in damage ρ.

4.3 Expected damage-to-resin equivalence

We can now evaluate the expected increase in damage per resin spent ratio
(in expectation). Let d′ > d be the damage of new artifact, and let N be the

12

number of farming runs it took to find this artifact. Then we can estimate the
damage-to-resin ratio of this particular artifact to be:

ω =
d′

cN

Where c is the artifact-to-resin ratio. Then we can take the expectation:

E[ω] = E
[ρ
cN

]
=

1

c
E [ρ]E

[
1

N

]
We can split the expectation because d′ and N are independent random

variables. E[ρ] is already from eq (12). We can find the expected value of 1/N
because we know N is an geometric distribution.

E
[

1

N

]
=

∞∑
n=1

1

n
p(1− p)n−1

=
p

1− p

∞∑
n=1

(1− p)n

n
(13)

=
p

1− p
(− ln[1− (1− p)]) (14)

= −p ln p

1− p

The jump from line (13) to (14) is simply the infinite Taylor expansion of
the function − ln(1− x). This gives us all the tools we need to evaluate E[ω],
giving us the expected damage per resin spent ratio.

4.4 Summary

The formula lets you calculate ω, the resin-to-damage ratio.

E[ω] = −1

c

p ln p

1− p
1

5

∑
slot

∑
m∈M

∑
s1−4∈S

P (s1−4|m)P (m)E[d′|d′ > d,m, s]

E[d′|d′ > d,m, s] = µ′X +
fX′(d)

1− FX′(d)
σX′

13

A Bell’s polynomials

Bell’s Polynomials (incomplete exponential Bell polynomials):

Bn,k(x1, x2, · · ·) =
∑ n!

j1!j2! · · · jn−k+1!

(x1

1!

)j1
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

(15)

Where the sum is taken over all sequences j1, · · · , jn−k+1 such that:

j1 + · · ·+ jn−k+1 = k

j1 + 2j2 + · · ·+ (n− k + 1)jn−k+1 = n

A formula for describing and computing the ordinary multinomials (Bel-
bachir, et al. 2008): ∑

a≥0

(
L

a

)
q

ta = (1 + t+ · · ·+ tq)L

(
L

a

)
q

=

ba/(q+1)c∑
j=0

(−1)j
(
L

j

)(
a− j(q + 1) + L− 1

L− 1

)
A special identity for Bell’s polynomials, also from Belbachir et al, 2008.

Bn,L (1!, 2!, · · · , (q + 1)!, 0, · · ·) =
n!

L!

(
L

n− L

)
q

Using the same proof technique as Belbachir et al, I have created a new
version of above special identity for use in this document.

Bn,L (0, · · · , a!, (a+ 1)!, · · · , b!, 0, · · ·) =
n!

L!

(
L

n− aL

)
b−a

(16)

From a user on OEIS A008287 (Jean-François Alcover), we have the following
special formula for a particular multinomial:(

n

k

)
3

=

k/2∑
i=0

(
n

i

)(
n

k − 2i

)
(17)

B Faa di Bruno formula

The Faa di Bruno formula describes the nth derivative of a composition of
functions. Let f, g : R → R be infinitely differentiable functions. Let h(x) =
f(g(x)). The first derivative of h is commonly known as the chain rule.

h′(x) = f ′(g(x))g′(x)

For higher derivatives, this becomes much more obscure. It is related to the
Bell polynomials.

h(n) =

n∑
k=1

f (k)(g(x)) ·Bn,k
(
g′(x), g′′(x), · · · , g(n−k+1)(x)

)
(18)

14

C Tables of µ and σ values

C.1 Table for µ

µ(a, n)
(8, 1) 3/4
(9, 1) 2/4
(10, 1) 1/4

(15, 2) 15/16
(16, 2) 13/16
(17, 2) 10/16
(18, 2) 6/16
(19, 2) 3/16
(20, 2) 1/16

(22, 3) 63/64
(23, 3) 60/64
(24, 3) 54/64
(25, 3) 44/64
(26, 3) 32/64
(27, 3) 20/64
(28, 3) 10/64
(29, 3) 4/64
(30, 3) 1/64

(29, 4) 255/256
(30, 4) 251/256
(31, 4) 241/256
(32, 4) 221/256
(33, 4) 190/256
(34, 4) 150/256
(35, 4) 106/256
(36, 4) 66/256
(37, 4) 35/256
(38, 4) 15/256
(39, 4) 5/256
(40, 4) 1/256

µ(a, n)
(36, 5) 1023/1024
(37, 5) 1018/1024
(38, 5) 1003/1024
(39, 5) 968/1024
(40, 5) 903/1024
(41, 5) 802/1024
(42, 5) 667/1024
(43, 5) 512/1024
(44, 5) 357/1024
(45, 5) 222/1024
(46, 5) 121/1024
(47, 5) 56/1024
(48, 5) 21/1024
(49, 5) 6/1024
(50, 5) 1/1024

(43, 6) 4095/4096
(44, 6) 4089/4096
(45, 6) 4068/4096
(46, 6) 4012/4096
(47, 6) 3892/4096
(48, 6) 3676/4096
(49, 6) 3340/4096
(50, 6) 2884/4096
(51, 6) 2338/4096
(52, 6) 1758/4096
(53, 6) 1212/4096
(54, 6) 756/4096
(55, 6) 420/4096
(56, 6) 204/4096
(57, 6) 84/4096
(58, 6) 28/4096
(59, 6) 7/4096
(60, 6) 1/4096

Table 2: All nontrivial values for µ

C.2 Table for σ

15

σ(·) N
(0) 1 3/4
(1) 1 1/4

(0) 2 9/16
(1) 2 6/16
(2) 2 1/16

(0) 3 27/64
(1) 3 27/64
(2) 3 9/64
(3) 3 1/64

(0) 4 81/256
(1) 4 108/256
(2) 4 54/256
(3) 4 12/256
(4) 4 1/256

(0) 5 243/1024
(1) 5 405/1024
(2) 5 270/1024
(3) 5 90/1024
(4) 5 15/1024
(5) 5 1/1024

σ(·) N
(0, 0) 1 2/4
(0, 1) 1 1/4

(0, 0) 2 4/16
(0, 1) 2 4/16
(0, 2) 2 1/16
(1, 1) 2 2/16

(0, 0) 3 8/64
(0, 1) 3 12/64
(0, 2) 3 6/64
(0, 3) 3 1/64
(1, 1) 3 12/64
(1, 2) 3 3/64

(0, 0) 4 16/256
(0, 1) 4 32/256
(0, 2) 4 24/256
(0, 3) 4 8/256
(0, 4) 4 1/256
(1, 1) 4 48/256
(1, 2) 4 24/256
(1, 3) 4 4/256
(2, 2) 4 6/256

(0, 0) 5 32/1024
(0, 1) 5 80/1024
(0, 2) 5 80/1024
(0, 3) 5 40/1024
(0, 4) 5 10/1024
(0, 5) 5 1/1024
(1, 1) 5 160/1024
(1, 2) 5 120/1024
(1, 3) 5 40/1024
(1, 4) 5 5/1024
(2, 2) 5 60/1024
(2, 3) 5 10/1024

σ(·) N
(0, 0, 0, 1) 1 1/4

(0, 0, 0, 2) 2 1/16
(0, 0, 1, 1) 2 2/16

(0, 0, 0, 3) 3 1/64
(0, 0, 1, 2) 3 3/64
(0, 1, 1, 1) 3 6/64

(0, 0, 0, 4) 4 1/256
(0, 0, 1, 3) 4 4/256
(0, 0, 2, 2) 4 6/256
(0, 1, 1, 2) 4 12/256
(1, 1, 1, 1) 4 24/256

(0, 0, 0, 5) 5 1/1024
(0, 0, 1, 4) 5 5/1024
(0, 0, 2, 3) 5 10/1024
(0, 1, 1, 3) 5 20/1024
(0, 1, 2, 2) 5 30/1024
(1, 1, 1, 2) 5 60/1024

Table 3: Table of nontrivial values of σ

16

D Program to compute substat probabilities

A Python program.

from fractions import Fraction

def prob(distr, subs, depth=4):
if len(subs) == 0:

return 1
elif depth == 0:

return 0

denom = sum(distr.values())
pps = []
for k, v in distr.items():

dnext = distr.copy()
del dnext[k]
p = Fraction(v, denom)
p = v / denom
nxtsub = subs.copy()
if k in subs:

nxtsub.remove(k)
pz = prob2(dnext, nxtsub, depth−1)
pps.append(p ∗ pz)

return sum(pps)

Usage (in python script)

dz = {’HP’: 6, ’DEF’: 6, ’ATK’: 6,
’HP%’: 4, ’DEF%’: 4, ’ATK%’: 4,
’ER’: 4, ’EM’: 4,
’CR’: 3, ’CD’: 3}

print(prob(dz, {’CR’, ’HP’}))
8 8 7 2 0 3 0 1 3 4 7 0 3 / 7 0 5 5 0 7 8 5 7 4 5 4 4 0 = 0 . 1 2 5 8

17

E Derivation of integral over the Standard Or-
thogonal Simplex

Define the standard orthogonal simplex:

∆n
c =

{
(x1, · · · , xn) ∈ Rn

∣∣∣∣∣
n∑
i=1

xi ≤ 1 and xi ≥ 0

}

Then our region of integration can be defined as:

R =

{
(x1, · · · , x4) ∈ R4

∣∣∣∣∣7N ≤∑
i

xi ≤ 10N

}
= 10N∆n

c \ 7N∆n
c

So we can write: ∫
R
fdxi =

∫
10N∆4

c

fdxi −
∫

7N∆4
c

fdxi

Let f be some polynomial function in xi. Then the following formula holds:∫
λ∆n

c

xk11 · · ·xknn dxi =
λK+n

(K + n)!
k1! · · · kn!

where K = k1 + · · ·+ kn.

Proof. By induction.
Base case n = 1. We have the trivial integral∫ λ

0

xkdx =
1

k + 1
xk+1

∣∣∣∣λ
x=0

=
λk+1

k + 1
=

λk+1

(k + 1)!
k!

Induction step. Suppose the formula holds true for all n′ < n. Then:∫
λ∆n

c

xk11 · · ·xknn dxi =

∫ λ

0

∫ λ−x1

0

· · · dx2dx1

=

∫ λ

0

xk11

∫
(λ−x1)∆n−1

c

· · · dx1

=

∫ λ

0

xk11

(λ− x1)K−k1+n−1

(K − k1 + n− 1)!
k2! · · · kn!dx1

=
k2! · · · kn!

(K − k1 + n− 1)!

∫ λ

0

xk1(λ− x1)K−k1+n−1dx1

18

Perform a simple u-sub with x1 = λu on the integral:∫ λ

0

xk1(λ− x1)K−k1+n−1dx1 =

∫ 1

0

λk1uk1 [λ(1− u)]K−k1+n−1λdu

= λK+n

∫ 1

0

uk1(1− u)K−k1+n−1du

Now this integral is easily recognizable as a Beta function.

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)∫ 1

0

tx(1− t)ydt = B(x− 1, y − 1) =
x!y!

(x+ y + 1)!

Therefore we can evaluate:∫ λ

0

xk1(λ− x1)K−k1+n−1dx1

∫
λ∆n

c

xk11 · · ·xknn dxi =
k2! · · · kn!

(K − k1 + n− 1)!
λK+n

∫ 1

0

uk1(1− u)K−k1+n−1du

=
k2! · · · kn!

(K − k1 + n− 1)!
λK+n (K − k1 + n− 1)!k1!

(K + n)!

=
λK+n

(K + n)!
k1!k2! · · · kn!

F Gaussian approximation Error Analysis

Let f and F be the true probability distribution and cdf, respectively. Let g
and G be that Gaussian approximations of f and F . With fi = kiai, we have
fX = f1 ? f2 ? f3 ? f4 and FX = F1 ? f2 ? · · · = f1 ? F2 ? · · · .

Then the error of our approximation is:

||F −G||∞ = sup
x
|F (x)−G(x)|

We know that due to the integer nature of sub-stat upgrades, F must be a
piece-wise constant function. In other words, F (x) = Fk is constant for all x in
the interval x ∈ [qk, qk+1).

Then we can use Taylor remainder theorem to find the error in terms of
the derivative, treating Fk as the 0th order approximation, and using the first

19

derivative as the remainder.

||F −G||∞ = sup
x
|F (x)−G(x)|

= max
k

sup
x∈[qk,qk+1)

|Fk −G(x)|

≤ max
k

sup
x∈[qk,qk+1)

sup
ξ
G′(ξ)(x− xk) (19)

We can evaluate this in parts. First, the maximum of the derivative of a
Gaussian cumulative distribution function.

sup
ξ
G′(ξ) = sup

ξ
g(ξ)

=
1

σ∗
√

2π

We know G′ = g, which is just a Gaussian density function. The maximum
is known and easy to compute.

As for estimating an upper bound for (x−xk), I will argue that it is bounded
by maxi wi/2 in part F.1. Anyhow, we can then say:

||F −G||∞ ≤ max
k

sup
x∈[qk,qk+1)

sup
ξ
G′(ξ)(x− xk)

≤ max
k

sup
x∈[qk,qk+1)

1

σ∗
√

2π
max
i

wi
2

= max
i

wi

2σ∗
√

2π

F.1 Upper bound for (x− xk)

For simplicity, consider f = f1 ? f∗ and g = g1 ? g∗. Then we can actually
decompose F −G.

F −G = F1 ? f∗ −G1 ? g∗

= F1 ? f∗ −G1 ? f∗ +G1 ? f∗ −G1 ? g∗

= (F1 −G1) ? f∗ + g1 ? (F∗ −G∗)

Then using the triangle inequality, we have:

||F −G||∞ ≤ ||(F1 −G1) ? f∗||∞ + ||g1 ? (F∗ −G∗)||∞ (20)

||(F1 −G1) ? f∗||∞ ≤ ||F −G||∞ + ||g1 ? (F∗ −G∗)||∞ (21)

Now for some handwaving. We know (F − G) and (F∗ − G∗) look vaguely
sawtooth-like, because we are subtracting a continuous function G from a piece-
wise constant function F .

20

Let w1 be the largest w associated with any fi or gi. Then because g1 is
continuous and is wider than the pattern of (F∗−G∗), convolving g1 ? (F∗−G∗)
will result in a nearly zero function. In other words, assume

||g1 ? (F∗ −G∗)||∞ � 1

Using this assumption in equations (20) and (21, we get

||F −G||∞ ≈ ||(F1 −G1) ? f∗||∞

Next, I cast Young’s inequality for convolutions.

||F −G||∞ ≈ ||(F1 −G1) ? f∗||∞
≤ ||F1 −G1||∞||f∗||1

Because f∗ is always positive, the L1 norm is just the integral, which is
unity. And so we have that the maximum discrepancy is approximately upper
bounded by ||F1 −G1||∞.

We can compute the upper bound with the exact same Taylor remainder
logic as in eq (19). Only this time, because F1 consists of constant values with
uniform spacing, it’s much easier to claim that the max of (x− xk) is w1/2.

So by analogue, the max of (x− xk) in eq (19) should be w1/2, where w1 is
the largest such wi.

F.2 Mixed approximation

If for whatever reason the error estimate is too large, we can try to reduce the
error by mixing exact and approximate portions.

Suppose we have the approximation with substat weights[
w1 w2 w3 w4

]
=
[
1 20 0.7 0

]
What we can do is approximate a Normal distribution using the weights

(w1, w3, w4) to reduce the upper bound of (x − xk) to w1/2. Then we evalu-
ate F2 exactly, and numerically convolve f2 with G134 to perform the mixed
convolution.

This operation is computable because f2 is a discrete distribution, so rather
than using an integral, we can just sum over the possible values. However, the
runtime suffers depending on how big the sum is.

21

	Introduction
	Contribution 1: Roll probability calculator
	Contribution 2: Artifact replacement calculator
	Contribution 3: Artifact set completeness And DPS-to-resin

	Roll probability calculation
	Generating functions and Algebra
	Evaluating derivatives
	Multivariate conditional independence

	Total artifact query & Caching
	Caching sigma
	Caching mu

	Desired main and sub stats
	Summary

	Artifact replacement
	Damage formula approximation
	Polynomial approximation of D
	Linear approximation of D

	The other integral
	Computing P(d' >d)
	Weighted sums of artifact substats
	Approximate weighted sums of artifact substats
	Estimation Error

	Normal approximation of d'
	Summary

	Artifact Set Completeness
	Expected farming duration for Improvement
	Expected increase in damage
	Expected damage-to-resin equivalence
	Summary

	Bell's polynomials
	Faa di Bruno formula
	Table of mu and sigma values
	Table for mu
	Table for sigma

	Program to compute substat probabilities
	Derivation of integral over the Standard Orthogonal Simplex
	Gaussian approximation Error Analysis
	Upper bound for (x-xk)
	Mixed approximation

